Mark schemes

Q1.
A point that lies on the circumference, eg $(4,5),(10,5),(7,2),(7,8)$
B1 $(4, y)$ or $(10, y)$ or $(x, 2)$ or $(x, 8)$
B1 for 4 or 10 clearly shown as min or max horizontal value
B1 for 2 or 8 clearly shown as min or max vertical value

Additional Guidance

Circle measurement is 2.6 cm so if subtracted or added then rounded can lead to correct answer, but allow as 2.6 rounds to 3 , so mark answer line, ignore any other working

Q2.
$\pi \times 6 \times 6 \div 2$
oe accept a numerical value for π
18π or a numerical value
[55.8, 56.57]
Accept $\pi \times 18$ or $\pi 18$

Q3.
$\pi \times 6 \times 6$
or 36π or [113, 113.112]
or $9 \times[3.14,3.142]$ or $[28.26,28.3]$
oe
accept [3.14, 3.142] for π
9π or $9 \times \pi$ or $\pi 9$ or $\pi \times 9$

Additional Guidance

36π followed by an incorrect method
eg $36 \pi \div 2=18 \pi$ with answer 18π

Answer of 9π from $\pi \times 3^{2}$
9π and [28.26, 28.3] given on answer line
πr^{2} stated but followed by 36 or 9

Q4.
(a) radius
(b) chord
(c) tangent

Q5.
$\frac{150}{360} \times 2 \times \pi \times 6$
or 5π or $[15.5,15.71]$
oe
$2 \times$ their 5π
or $\frac{300}{360} \times 2 \times \pi \times 6$
oe
NB $\frac{\frac{300}{360}}{} \times 2 \times \pi \times 6$ is M2
10π or $[31,31.42]$
A1
their $10 \pi+18$ or $[49,49.42]$
SC1 18 or $6+6+3+3$ seen

Q6.
(a) Fully correct constructed circle drawn with radius [5.9, 6.1]

B1 for any circle centre P (must be constructed and not freehand)
(b) Sector drawn $\left[58^{\circ}, 62^{\circ}\right]$ degrees

B1 for any sector

Q7.

chord

Q8.
$2 \times \pi \times 37$ or $\pi \times 74$
or 8×37 or 296
Accept [3.14, 3.142] for π
$[232,233]$ or 74π
May be implied by e.g. $74 \pi+\ldots$
A1
$[528,529]$ or $74 \pi+296$

Additional Guidance

$$
360-37 \times 8
$$

37×8 or 296 seen and then e.g. halved or doubled
M1

Q9.
(Diameter or side of square $=$) $\sqrt{36}$ or 6 or (radius $=$) 3

$$
6 \times 6(=36)
$$

$\pi \times 6$
or $2 \times \pi \times 3$
[18.8, 18.9] or 6π
Accept 19 with working shown

Additional Guidance

Accept [3.14, 3.142] for π
Ignore further working after 6π, that is if they incorrectly work 6π out award full marks
Do not accept $\pi 6$ for the A mark
6 or 3 may be on diagram but must be correct, e.g. radius must be 3 , not 6

Q10.
(a) $[2.7,2.9]$

If answer in mm , accept [27mm, 29mm]
Ignore further working if answer seen, e.g calculating area or circumference
(b) $[5.4,5.8]$
ft their (a) $\times 2$
Ignore further working if answer seen, e.g calculating area or circumference
(c) d equals $2 r$
oe
or r equals $\frac{1}{2} d$
Accept $d=2 r$
Do not accept $d=r 2$
diameter equals twice radius
radius is half the diameter

Q11.
(a)

(b)

Allow diameter as special case of chord
(c)

Allow radius to be drawn in too as long as it touches the tangent

Q12.

$2 \times \pi \times 7$ oe
or [43.9, 44]
14π
$2 \times \pi \times 7 \div 4 o e$
or $[10.9,11]$
$7 \pi / 2$
or $2 \times \pi \times 7 \times 3$ oe
or [131.9, 132]
42π
$2 \times \pi \times 7 \div 4 \times 3$ oe
or $[32.9,33]$

$$
21 \pi / 2
$$

[46.9, 47]
$10.5 \pi+14$ oe
SC2 for [23.4, 23.5] or [30.4, 30.5]
SC1 for [16.4, 16.5]

Q13.
$\pi \times 6^{2}$
113.(...) or 36π

Q14.
$8 \div 2(=4)$ oe
$\pi \times$ their $4 \times$ their 4 oe
Allow 3.14 or better for π
M1dep
[50.2, 50.3] or 16π
Condone [13.7, 13.8] or 64-16 π as $f w$

Q15.

(a) $\pi r+2 r$
(b) their $(\pi r+2 r)=11.6$
ft their formula from (a) or for an incorrect formula that is given in (a)
Allow $\pi=3.14$ or better throughout
$r(\pi+2)=11.6$
or $(r=) 11.6 \div(\pi+2)$
2.256... or 2.2559...
2.26 or 2.3

Accept 1.8 or 1.85 if $2 \pi r$ used
2.7 or 2.72 if $\frac{1}{2} \pi r^{2}$ used
3.7 or 3.69 if πr used

Q16.
(a) $2 \times \pi \times 9.4$ oe
or $18.8 \times \pi$
$[59,59.1]$ or 18.8π or $\frac{94 \pi}{5}$
(b) their $59 \div 2+9.4+9.4$ oe
48.3 or $9.4 \pi+18.8$
[48.3, 48.4]

$$
\text { or } \frac{47 \pi}{5}+18.8
$$

Q17.
Circumference

Q18.

(a) Radius
(b) Sector
(c) Diameter passes through the centre.

Chord is smaller
Diameter cuts into equal (half) sections, Chord cuts into unequal sections Ignore irrelevant statements, correct or otherwise.
Any reference to diameter and/or chord must be correct or BO

Q19.

Side of square $=14 \mathrm{~cm}$ seen or implied

$$
\text { eg } 14 \times 14 \text { or } 196
$$

$\pi \times 7^{2}$
or 49π
or $[153.8,154]$
oe

$$
\begin{aligned}
& 14 \times 14-\pi \times 7^{2} \\
& \text { or } 196-[153.8,154]
\end{aligned}
$$

oe
[42, 42.2] or $196-49 \pi$

Q20.
$\frac{120}{360} \times 2 \times \pi \times 4$
or $\frac{120}{360} \times 2 \times \pi \times 5$
$\frac{120}{360} \times 2 \times \pi \times 4$
and $\frac{120}{360} \times 2 \times \pi \times 5$
oe
$\frac{120}{360} \times 2 \times \pi \times 5-\frac{120}{360} \times 2 \times \pi \times 4$
or
[8.37, 8.38] or 8.4 and $[10.46,10.48]$ or 10.5
oe
2.1

Q21.
tangent
sector
arc
B1
chord

Q22.

$\pi \times 8 \times 8$ oe
$\frac{130}{360} \times \pi \times 8 \times 8$ oe
72.5... or 72.6...

73 or 72.6

Q23.

$2 \times \pi \times 12$ or [75.3, 75.4]
oe 24π
or [28.2, 28.3]

$$
\begin{array}{lr}
o e & \\
9 \pi & (+24)
\end{array}
$$

[52.2, 52.3]
Do not award if $\pi=3$ used

Q24.
diameter
circumference
tangent
chord

Q25.
(a) Correct tangent drawn

Additional Guidance

Accept unruled line if intention is clear
Tangent must be drawn without clear space between line and circle Ignore square drawn on grid lines from part (b)

Tangent may be drawn as part of a square

Accept tangent which does not extend to both sides of circle

Accept tangent drawn and ignore any radius or diameter drawn

Do not accept tangent and chord drawn together
(b) Valid reason for the area of the circle or the square around the circle

Additional Guidance

The area of the circle stated to be [4.5, 6.2] without incorrect working

Area of circle of radius $1.5(\mathrm{~cm})$ is $7(.06 \ldots$) or 7.07 or 7.1

The square around it is only $9 \mathrm{~cm}^{2}$ or 9 squares or 3×3 square

There aren't 9 squares in the circle

The circle fits into a $9 \mathrm{~cm}^{2}$ square or 9 squares or 3×3 square

It only covers about [4.5, 6.2] squares

Circle does not (completely) cover nine separate boxes

There is one whole square and 8 part squares in the circle

Because all of the space for 9 is not used up
B1
Calculate radius $=1.6(9 \ldots)(\mathrm{cm})$ or $1.7(\mathrm{~cm})$ from area of circle $9\left(\mathrm{~cm}^{2}\right)$ and states radius of circle drawn is smaller

B1
She uses 9 squares that are half in and half out of the circle, she needed to work it out only using the squares inside the circle

Does not fill up the whole square (no reference to 9)

Because the radius is not big enough for it to be 9

